Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Piotr Stefanowicz, Łukasz Jaremko,* Mariusz Jaremko and Tadeusz Lis

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie Street, 50-383 Wrocław, Poland

Correspondence e-mail:
jaremko@wcheto.chem.uni.wroc.pl

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.133$
Data-to-parameter ratio $=30.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[(2-Naphthylsulfonyl)oxy]pyrrolidine-2,5-dione

The title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$, is an ester of β-naphthylsulfonic acid and N-hydroxysuccinimide. The N atom retains a flattened pyramidal geometry. The C atoms of the succinic ring are coplanar and the N atom is slightly displaced from their plane, leading to a pseudo-envelope conformation. The crystal structure is stabilized by a three-dimensional network of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and offset π-stacking interactions.

Comment

The molecular structure and atom-numbering scheme of the title compound, (I), are presented in Fig. 1. The $\mathrm{O} 1-\mathrm{N}$ bond length $[1.384$ (1) \AA] is comparable with the distances reported for non-tosylated N-hydroxyimides [mean value 1.383 (5) Å; Karolak-Wojciechowska et al., 1993; Miao et al., 1995], but slightly smaller than those reported for benzenesulfonic derivatives $[1.395$ (1)-1.401 (1) \AA; Grigorieva \& Chetkina, 1977]. The $\mathrm{C} 11-\mathrm{N}$ [1.392 (1) \AA] and $\mathrm{N}-\mathrm{C} 14$ [1.401 (1) \AA] bond lengths are slightly longer than typical values for $\mathrm{C}-\mathrm{N}$ succinimide bonds [ca 1.375 (5) Å; Karolak-Wojciechowska et al., 1993]. The N atom is displaced from the C11/C14/O1 plane by 0.150 (1) \AA and thus has a flattened pyramidal geometry, as may also be deduced from the sum of the $\mathrm{O} 1-\mathrm{N}-\mathrm{C} 14, \mathrm{O} 1-$ $\mathrm{N}-\mathrm{C} 11$ and $\mathrm{C} 14-\mathrm{N}-\mathrm{C} 11$ bond angles [356.6°; Table 2]. Such a situation was also observed for N-benzenesulfonyloxynaphthalimide (Grigorieva \& Chetkina, 1977), but was not observed for almost-planar N-hydroxyimides (KarolakWojciechowska et al., 1993; Miao et al., 1995; Abell \& Oldham, 1999) or slightly puckered N-halogensuccinimides (Brown, 1961).

(I)

The β-naphthyl system of (I) is nearly planar, the largest deviation from planarity being 0.019 (1) \AA for atom C6. This slight deviation from planarity is reflected by a dihedral angle between the two fused rings of $1.30(6)^{\circ}$.

The S atom has a distorted tetrahedral environment, as already observed for arylsulfonyl-related compounds (White et al., 1970; Karapetyan et al., 1998; Jones et al., 1986). The expanded $\mathrm{O} 2-\mathrm{S}-\mathrm{O} 3$ angle $\left[121.0(1)^{\circ}\right]$ and the resulting $\mathrm{O} 1-\mathrm{S}-\mathrm{C} 2$ angle $\left[101.6(1)^{\circ}\right.$], smaller than the ideal tetrahedral value, are attributed to the Thorpe-Ingold effect (Bassindale, 1984).
\qquad

Figure 1
A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A view showing the packing of the molecules of (I) in the unit cell. Dashed lines indicate the short $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts. [Symmetry code: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$.]

Figure 3
A view showing the offset π-stacking (dashed lines) between the naphthyl rings. [Symmetry code: (ii) $1-x, 1-y, 1-z$.]

The crystal packing of (I) is characterized by two C-H...O-type hydrogen bonds (Table 2). Symmetry-related molecules are linked to each other in the ac plane, forming
ribbons (Fig. 2). The β-naphthyl systems of adjacent ribbons are anti-parallel to each other and the distance between β-naphthyl planes is $3.536(2) \AA$, resulting in an offset π stacking interaction, with atoms H1 and H8 of the naphthyl ring lying over the ring centroids (Fig. 3).

Experimental

For the synthesis of compound (I), naphthalene-2-sulfonyl chloride $(6.50 \mathrm{~g}, 28.7 \mathrm{mmol})$ and N-hydroxysuccinimide $(3.30 \mathrm{~g}, 28.7 \mathrm{mmol})$ were dissolved in tetrahydrofuran $(30 \mathrm{ml})$; triethylamine $(1.7 \mathrm{ml})$ was then added dropwise over 20 min . After 40 min , the solvent was removed in vacuo, and distilled water $(50 \mathrm{ml})$ with 3 drops of concentrated hydrochloric acid was added. The precipitate was filtered off, washed twice with water and recrystallized from ethyl acetate. The yield of compound (I) was 8.00 g (98%), m.p. 438 K.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$
$M_{r}=305.31$
Monoclinic, $P 2_{1} / c$
$a=12.090$ (3) \AA
$b=13.403$ (3) \AA
$c=8.157$ (3) \AA
$\beta=95.79$ (3) ${ }^{\circ}$
$V=1315.0$ (7) \AA^{3}
$Z=4$

$$
D_{x}=1.542 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 14458
reflections
$\theta=4.7-38.0^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Block, colourless
$0.45 \times 0.3 \times 0.2 \mathrm{~mm}$

Data collection

Oxford Xcalibur PX κ geometry diffractometer
ω and φ scans
Absorption correction: numerical
(CrysAlisRED; Oxford
Diffraction, 2003)
$T_{\text {min }}=0.896, T_{\text {max }}=0.952$
7118 independent reflections 5112 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=38.0^{\circ}$
$h=-20 \rightarrow 20$
$k=-23 \rightarrow 21$
$l=-14 \rightarrow 13$
29699 measured reflections

Refinement

Refinement on F^{2}
All H -atom parameters refined
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.133$
$S=1.05$
7118 reflections
234 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0771 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.64 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.52 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

S-O3	$1.4289(10)$	$\mathrm{N}-\mathrm{C} 11$	$1.3918(13)$
$\mathrm{S}-\mathrm{O} 2$	$1.4305(8)$	$\mathrm{N}-\mathrm{C} 14$	$1.4006(13)$
$\mathrm{S}-\mathrm{O} 1$	$1.6599(8)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.3701(15)$
$\mathrm{O} 1-\mathrm{N}$	$1.3842(11)$	$\mathrm{C} 1-\mathrm{C} 9$	$1.4198(14)$
$\mathrm{O} 1-\mathrm{N}-\mathrm{C} 11$	$118.97(8)$	$\mathrm{C} 11-\mathrm{N}-\mathrm{C} 14$	$116.25(8)$
$\mathrm{O} 1-\mathrm{N}-\mathrm{C} 14$	$121.34(8)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.98(2)$	$2.31(2)$	$3.275(2)$	$166(1)$
$\mathrm{C} 13-\mathrm{H} 13 A \cdots 2^{\mathrm{i}}$	$0.96(2)$	$2.54(2)$	$3.316(2)$	$138(1)$

Symmetry code: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.

organic papers

Data collection: CrysAlisCCD (Oxford Diffraction, 2003); cell refinement: CrysAlisRED (Oxford Diffraction, 2003); data reduction: CrysAlisRED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

References

Abell, A. D. \& Oldham, M. D. (1999). Bioorg. Med. Chem. Lett. 9, 497-500. Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch.1, p. 11. New York: John Wiley \& Sons.
Brown R. N. (1961). Acta Cryst. 14, 711-715.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Grigorieva, L. P. \& Chetkina, L. A. (1977). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 18, 908-916.
Jones, P. G., Edwards, M. R. \& Kirby, A. J. (1986). Acta Cryst. C42, 1228-1230.
Karapetyan, A. A., Terzian, S. S. \& Topuzian, V. O. (1998). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 39, 973-977.
Karolak-Wojciechowska, J., Kwiatkowski, W. \& Markowicz, W. (1993). J. Cryst. Spectrosc. Res. 23, 423-429.
Miao, F. M., Wang, J. L. \& Miao, X. S. (1995). Acta Cryst. C51, 712-713.
Oxford Diffraction (2003). CrysAlisCCD and CrysAlisRED. Versions 1.171. Oxford Diffraction Poland, Wrocław, Poland.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
White, E. H., Todd, M. J., Ribi, M., Ryan, T. J., Sieber, A. A. F., Dickerson, R. E. \& Bordner, J. (1970). Tetrahedron Lett. 50, 4467-4472.

